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The well-known result of Wlya and Schiffer concerned with an estimate for the added mass (AM) and 

polarization tensors is improved. The exact domain of variation of the AM and polarization tensors for a 

body of fixed volume is found. It is shown that the estimates of the possible values of the effective 

conductivity matrix known in the theory of composite materials are direct analogues of the corresponding 

estimates for the AM and polarization. The proposed method of proof differs only by longer calculations in 

the theory of composites, but opens a wider perspective for studying a number of other problems in the 

theory of composites. Moreover, the exact value of the AM is calculated for two independently moving 

cylinders at the moment of contact. 

IN IDEAL incompressible fluid dynamics the Pblya-Schiffer inequality [l] is known to hold for added 
mass (AM). According to this inequality, the AM of a body averaged over the directions is not less 
than that of a sphere of the same volume. Strangely enough, no answer to the question concerning 
the domain of possible values of the AM tensor for a body of a given volume can be found in the 
literature. 

At the same time, in the case of the more complex problem of estimating the effective 
conductivity of a two-phase composite, an answer has been obtained and constitutes the contents of 
the well-known Hashin-Shtrickman-Lurie-Cherkayev-Murat-Tartar two-sided estimates X-T 
[2-4]. As has already been pointed out in [5], the Polya-Schiffer estimate is the low-temperature 
limit of the X-T two-sided estimate. As a result of a more careful examination of the original proof 
of Polya and Schiffer, we discovered that, firstly, it enables one to give a complete answer to the 
question concerning the domain of variation of the AM, and, secondly, after a slight modification, it 
can be carried over to the case of two-phase composites, yielding a direct proof of the X-T estimate. 
Let us note that one of the Hashin-Shtrickman estimates has been obtained earlier in the same way 
in [6], where the analogy has also been pointed out. Although many proofs of the X-T two-sided 
estimate are known at present (see [7-g]), they are not so direct and employ deeper concepts. 

We became interested in the study of the AM in connection with the problem of determining the 
force of impact of a drifting iceberg hitting a drilling platform (for an experimental and numerical 
discussion of the problem, see e.g. [lo]). Here we are concerned with evaluating the AM of a 
cylinder when another stationary cylinder is present at the moment of contact, rather than for a 
cylinder immersed in an unbounded liquid. Below we shall give a simple exact solution of this 
problem using a conformal mapping. 

1. DOMAINS OF VARIATION OF ADDED MASSES AND POLARIZATION 

We recall that by the added mass {AM) tensor M = (mij) we mean the value of the following 
variational problem, in which the density of the fluid is assumed to be equal to unity: 
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Similarly, the value of the problem 

is called the polarization tensor b = (bii). 
The following theorem answers the question concerned with the AM (the polarization) of a body 

of fixed volume v. 

Theorem 1. The eigenvalues Mj(Bj) of the AM (polarization) tensor for a body of volume v lie in 
the domain determined by the inequalities 

n 

M,>O, j=l,...,n; r i a- 

4 -wj <+ 
1-l 

7l 

B,>O, j=l,...,n; 

(l-1) 

(1.2) 

The proof of (1.1) consists in substituting the simple layer potential 

cf, = 5 6.nG(s-y)dS, 
W 

(1.3) 

into the variational representation for the AM. Here G is the fundamental solution of the Laplace 
operator (AG = 6). On using Green’s formula and the jump of the normal derivative of the simple 
layer in the resulting integral over V, we apply the Cauchy inequality to estimate the Dirichlet 
integral. Then, after making the optimal choice of CE R”, we obtain the matrix inequality 

(M-l + ~-~)-l> II, II - {nil) = { S @Eagak ‘) dZ dy} s V 

(1.4) 

It should be mentioned that TrII = v, as follows from (1.4) and the equality AG = 6. To obtain the 
inequalities (1.2), one should proceed in the same way using the double-layer potential 

m*== 5-y s aG ‘in- y, dSu 
av Y 

(1.5) 

As can be seen from the proof presented above, inequalities (1.1) are exact if the harmonic 
function inside V, whose boundary value is equal to that of the AM potential on c~V, is linear in V. It 
is known that this is the case for ellipsoids. To construct a body of a given volume with the AM from 
the domain determined by inequalities (1. l), it suffices to attach suitable flat pieces to such an 
ellipsoid so that the volume remains unchanged but the AM is increased in the appropriate 
direction. 

It is interesting to note that 5 = 5 in Schiffer’s proof. This choice is exact only for a sphere and suffices for the 
correct estimate of the trace of the AM only. The P6lya-Schiffer estimate can be obtained from (1.1) if, in 
addition, one considers the inequality between the arithmetic mean and the geometric mean. 

We will also mention a useful inequality connecting the AM Mi of a body B1 with the AM M2 of a 
body B2 contained in B1. If we denote their volumes by v1 and v2, then the tensor inequality 
M’ + v1 3 M2 + v2 will be satisfied. The inequality can be obtained by substituting the AM potential 
of B2 as a test function into the variational problem that yields Ml. It is, however, more convenient 
to understand this inequality in the context of the theory of composites by considering two 
composites, one with the periodic inclusion B1 and the other one with B2, and assuming that these 
are non-conducting inclusions. Then, of course, the first composite has smaller effective conductiv- 
ity, which yields the desired inequality in the low-concentration limit [5]. 
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2. THE X-T TWO-SIDED ESTIMATE 

Let 0 < o1 6 a2 < CC and let Y, where 0 < v < 1, be the part of the volume occupied by the phase ur . 
The effective conductivity a” = (a+“) of the composite inside the cube [O, 11” can be determined 
from the relation 

(2.2) 

(a (4 = %X (4 + *a (j- x (a <x> - v) 

where x is the characteristic function of V, aoV1 is the inverse matrix to o0 and the minimum is 

sought in the set of periodic functions in (2.1) and vector-valued functions in (2.2), (-) being the 
average of a periodic function. 

According to the X-T two-sided estimate, the eigenvalues {kj > of CT* occupy the domain defined 
by the inequalities 

(2.3) 

To derive the estimate (2.3) for cy = 2, we use the representation (2.1) and, by analogy with (1.4), we take a 
test function of the form 

O(Z)=:~*~,+$(Z), Y(z)=f G(z--)n,fdS$,f~~R~ (2.4) 
@Y 

where G(r) is the periodic fundamental solution of the Laplace operator: 

A$ (z) = JJ a(z-k)-1 (2.5) 
kc@ 

Here 2” is the integer-vafued lattice, It is necessary to subtract one in order to obtain a periodic function G. 
A calculation using formula (1.5) to write down the energy in the domain V occupied by ur Ieads to the 

relation 

Estimating the Iast term by means of the Caucy inequality 

and setting II& = \,+dr, on choosing the optimal 4, we arrive at the matrix inequality 

(I=- ua 

(ax - a’ 
< - (uarr-i + y)-’ 

Solving this inequality for Ti and using the relation TrIl = v(1 - v), we obtain inequality (2.3) for a = 2. 
To derive this inequality for a = 1, which turns out to be more difficult from the computational point of view, 

one should take a test function of the form 
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in (2.2). Such a vector-valued function is admissible, since the normal derivative of a double layer is 
continuous. 

Using Green’s formula for the jump of the double layer potential, we obtain 

s 
u*]p)4dz= u= *I&?+25 o*E*V$dz+ 5 o*l Wl’dz 

In In 

o* = u-r (z), ui* = u*-1, aa* = ur-1, ua* = u,*v* + a** v 

s u E. Vq dx = a,*& + ua*K = (a* - as*) K, + h*h&*E 

In 

K = 1 E.Wds, K, = 1 E-Vqdz 
V V* 

Here we have used the transformation 

K = 
5 

n.@#dS, K* = S *inneEdS + 1 t.v.n.EdS 
BV BV* OV* 

where +in is the limiting value of JI from within the domain. By analogy, we have 

S (I* 1 V$ 1’ dx = (al* -uOp*)L++ur* c.V$dS, t,= S S IWW 
v* v* 

Besides (V+) = v* 5, and so, replacing E; by .$ + v* 1;, we get 

o”* (E + v*T)*(E + u*6) < <a-l I p I’> = 2 (ai* - ua*)t. 1 V~ds+ua*f- 1 V’#dx+ 
v* Y* 

+ 2ur+4*6 + ua* I E I’ + L, 

where u”* is the inverse matrix to 8. The last term can be estimated by means of the Cauchy inequality, as a 
result of which we arrive at the inequality 

(a”% f) 6 2&-A 6 + 86.6 + %*.I 5 I’ 

A = (ul* -Us*).&-- V*), B= 
UP-Us* 

5 
.n,s - 2 (u@ - Or%+) * n* + 

+ Ua'*H* +(UO+-2Ua*) V,‘, II&, = S V’P. dz 
V+ 

It is remarkable that B is divisible by A as a polynomial in n,. Thus, by optimizing 5, we can obtain the 
matrix inequality 

UO' - a,"* < -AB-‘A = -v* (II, - c.t.~,J-l ((I,* - aa*) (II,,, _ +a) 

where OL = (a,* - 2u2*)(u1* - u2*)-r. 
Solving this inequality for II.* and using the relation TrII* =n*v*+v*(l-v,), we arrive at the inequality 

(2.3) for CL = 1. The above estimates turn into equalities in the case when the extremal field is linear on the 
phase ul* (in a medium formed by attired ellipsoids [2]). 

For OL = 2.1, the estimates (1.1) and (1.2) can be obtained from (2.3) with u1 = 0, u2 = 1 and 
o1 = 1, crz = co, respectively, by passing to the small concentration limit for the periodic inclusion. 
This passage to the limit preserves the second or the first terms on the right-hand side of (2.3), 
respectively. This assertion can be obtained by the method described in [5]. 

3. THE ADDED MASS OF A CYLINDER IN THE PRESENCE OF A STATIONARY 

CYLINDER 

There are two circles: SR of radius R and S, of radius T. The circles are tangent to one another, 
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forming a figure-of-eight. We consider the problem of finding the harmonic function Q, inside the 
figure-of-eight with boundary conditions 

d@l&z 18, = 0, &P/an 18; = n ’ f 

n being the outer normal vector to S,. It is required that the AM tensor 

be evaluated. 

Theorem 2. The tensor (mij) is spherical, rnii = rn. Sii with m = pn (r, R}, where 

(3.1) 

In particular, 

forR= 03. 

m = nra (nV3 - 

To obtain (3.1), we must apply inversion with respect to the point of contact. Then we have to 
evaluate the Dirichlet integral of the harmonic function in the strip -1/(2r) <xl d lf(2R) that 
satisfies the conditions 

On applying a Fourier transformation (~+k) and solving the ordinary differential equation in 
xl, we obtain 

for 5 = (1,O). 
Evaluating the Dirichlet integral in terms of x1 and k using the Parseval equality, we obtain 

m(f,R) = n~kcth(k+$+++)dr 
0 

Hence, expanding the cth function in a geometric progression, we obtain (3.1). The series in (3.1) 
can be expressed in terms of the gamma-function [ll]: 

In a similar way we can evaluate the coefficient of pro~~ionality between the force acting on the 
stationary cylinder and the acceieration of the moving cylinder: 

S,/,r-, 

rn12 -2 5 dx, 5 dxl,Tu.Vu* 
__:iR-8 

where u * is harmonic in the strip and satisfies the following boundary conditions: 

A similar argument yields 
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ml8 = nIQ.n*/12 (Rh = (VJrl + +-y”) 

I am grateful to G. S. Kulikov for drawing this problem to my attention. 
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D. 3. BALASH~V 

(Received 20 April 1991) 

The solution of the system of equations of plane simple waves in a Prandtl-Reuss isotropically 

work-hardening medium is reduced in general (without any assumptions on the form of the work-hardening 

function and the state in front of the simple wave) to the investigation of an ordinary differential equation of 

the first order. In the special case of linear work-hardening, and also without work-hardening, the solution 

of the system of equations for plane simple waves is obtained in quadratures. The problem of an oblique 

shock on a prestressed half-space with arbitrary uniform constant stresses is solved for a linearly 

work-hardening medium. 

FOR THE Prandtl-Reuss equations, the corresponding system of ordinary differential equations of 
plane simple waves sometimes splits (because the component equations are uncoupled) and thus 
admits of a straightforward analysis. Plane simple waves propagating along the x1 axis of the 
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